US 2005/0005261 Al

[0537] 1t also becomes apparent that two object connec-
tions are required for each component. To reduce the number
of object connections (allowing greater flexibility), and to
add more flexibility to modify events that are fired from the
model before they reach the view controller an additional
modification is made. The view sends its events only to the
view controller and the model sends its events only to the
model controller. The need for the input controller goes
away as the responsibility is placed in the “view controller”
hierarchy. The model sends its events to the “model con-
troller” instead. The additional functionality, which other-
wise would be gained by adding an “input controller”
equivalent to the model side, is added to the “model con-
troller”.

[0538] Finally, it becomes apparent that the input events
understood by a “view in controller” and the events gener-
ated and sent out through the “view out controller” are
related and may be managed by the same component. The
same is true for the “model in controller” and the “model out
controller”. As a side effect of this consolidation of control-
lers, events no longer flow from the model to the view
controller or from the view to the model controller, instead
all events flow between the view controller and the model
controller. This allows the insertion of “forward” compo-
nents between the model controller and view controller,
which simply convert an event for transport over a network
and convert it back once it arrives on the other side.

[0539] This results in a HMVC design where from the
model side event flow from the model to several submodels.
Events from the several submodels flow to a respective
subcontroller for each submodel. Each of the subcontrollers
transfers events to the model controller. The model control-
ler then transfers events to the model. Events transfer from
the Model Controller to the Forward to View and events
transfer from the Forward to View to the Model Controller.

[0540] In the view side of the HMVC design, events
transfer from the view to several subviews that in turn
transfer events to respective subcontrollers. The subcontrol-
lers transfer events to the view controller. And events
transfer back and forth between the view controller and the
forward to model. Also events transfer to the view controller
from the view.

[0541] The final result is an enhanced version of MVC
(HMVC 4.6.2) that uses metadata in order to reduce the
number of events from several hundred different types of
events to a set of twelve models. Additional models can be
added to the HMVC pattern as necessary, but the design will
continue to keep the number of models low. HMVC 4.6.2
can programmatically check whether a model will correctly
work with a view, which is a task ordinarily left to error-
prone human programming. HMVC 4.6.2 is component
oriented, supporting increased code reuse while simulta-
neously decreasing the number of direct object connections
to allow greater flexibility.

[0542] As a result of the new design, “forward” compo-
nents can be inserted, adding support for transport over
networks without modifying any code in the model, view,
model controller, or view controller. As a result of the
separation of view logic from view controller logic, a
sophisticated view controller can dynamically construct an
appropriate view for presenting data for any model based on
the model controller’s metadata. As a result of the separation

Jan. 6, 2005

of model control logic from the model logic, a sophisticated
model controller can support actions (business logic) added
dynamically through the CI Engine and which define its data
(metadata, enable state, values) through the metadata
retrieved for the model the CI Engine is given. Without
writing any code, this model controller can be combined
with the dynamic view controller to automatically create a
view for a model. Using the component integration engine
allows the configuration of a forward to support a network
distribution, and automatically inherits scalability, security,
and database persistence from the component integration
engine. Since metadata can be used to describe database
records as a model object, the HMVC 4.6.2 model results in
a network or web-enabled 3-tier client-server application
with dynamically configurable functionality, with automati-
cally created views, automatic view controller logic, and
automatic model controller logic without programming a
single line of source code.

[0543] The use of metadata in events to describe the types
of available application functions and data, the definitions of
these units, the current state of these units, and the current
value of these units allows greater reuse of smaller user
interface components. Metadata in events allows a view
controller to use the metadata to assemble the correct
individual components necessary for display. The metadata
used in the events is the descriptors used in the meta-
implementation layer.

[0544] The HMV(C4.6.2 design of the present invention
makes use of metadata for defining the events that will be
exchanged rather than relying on the programmer to know
what events will be passed. Additionally, it provides new
mechanisms for coordinating the appropriate view to a
model by comparing metadata definitions.

EXAMPLE 1

[0545] The interrelationships between concepts of the
present invention may be illustrated by describing the prob-
lem domain of pet store management in a hypothetical pet
store. A pet store may contain many animals: bunnies, birds,
cats, dogs, and fish. Details related to circulatory system
processes, eyesight acuity, and fastest recorded land-speed
are not related to the problem domain and are abstracted
away from the software model. The types of animals suggest
the creation of a software model for Bird, Bunny, Cat, Dog,
and Fish. Common features between the various types of
animals could be grouped into a base model, animal. Animal
is an abstraction of Bird, Bunny, Cat, Dog, and Fish because
it does not include details specific to these animal types but
includes only features common to all these animal types.
Dog is a sub-model of Animal that is generally loyal, may
slobber a bit, and enjoys chasing cats.

[0546] A pet store may also require models related to pet
food inventory management. Models related to food inven-
tory are still related to the pet store problem domain, but are
not logically similar to software models for the animals.
Therefore the Animal, Bird, Bunny, Cat, Dog, and Fish
models could be grouped into a package named “animals”.
The software models related to food management could be
grouped into a package named “inventory”. Both of these
packages would be contained in a parent package named
“pet store”.



